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The incipient separation from a corner in steady two-dimensional transonic flow is
studied based on viscous–inviscid interaction at high Reynolds number. Of particular
interest is the investigation of the dependence of the critical deflection angle (when a
well-attached flow turns into a separated flow) on the Kármán–Guderley parameter
which characterizes the local flow field. In accordance with the procedure adopted, the
analysis of the flow starts with the analysis of the boundary layer and then the solution
of the Kármán–Guderley equation describing the inviscid part of the flow near the
corner point is investigated. The analysis of the inviscid transonic flow is performed
based on the hodograph method and new solutions are obtained corresponding to
the present flow topologies. In these solutions, the transonic flow appears to be
subsonic everywhere except at the sonic corner point. Then, the interaction problem
is formulated using the triple-deck model. Lastly, a procedure based on a semi-direct
solution of the governing equations using Newton iterations is developed to obtain
the numerical solution of the interaction problem.

1. Introduction
The phenomenon of flow separation from a body surface, whether it is smooth or

not, has been studied using triple-deck theory by many workers since the end of the
1960s. Most of the works were on supersonic or subsonic flows (see, for example,
Stewartson 1970; Neiland 1971; Jenson, Burggraf & Rizzetta 1975 and Ruban 1976,
1978), but little is known about the case when the flow is transonic. This is because
the equation describing the inviscid transonic flow, the Kármán–Guderley equation,
is nonlinear. Therefore it appears to be impossible to formulate the interaction law
in an explicit form which would relate the displacement effect of the boundary
layer to the pressure induced in the inviscid part of the flow, as in the subsonic
and supersonic cases. Instead of studying the interaction corresponding to a relatively
simple interaction law, we have to solve the Kármán–Guderley equation together with
the boundary-layer equations in order to cover the transonic nature of the flow field.

There are not many studies which explain the flow properties for transonic speeds
as a result of the viscous–inviscid problem near the corner points. The first work
on the modern theory of transonic viscous–inviscid interaction was performed by
Bodonyi & Kluwick (1977). They considered the free interaction of the boundary layer
with inviscid transonic flow for the case when the external flow remains supersonic
everywhere. A simple-wave-like solution of the Kármán–Guderley equation was used
to relate the streamline slope at the outer edge of the boundary layer to the induced
pressure. In this case, a simple interaction law was found between the pressure and the
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flow inclination angle, like the Ackeret formula for supersonic flows. It is not surprising
that the flow behaviour was found similar to the supersonic interaction case. Later,
Bodonyi (1979) investigated the transonic boundary-layer flow near convex corners
and again the Prandtl–Meyer relation for the case of the transonic limit (M∞ → 1) was
used as the interaction law, assuming that the velocity is supercritical (greater than
the speed of sound) in the inviscid part of the flow. Bodonyi & Kluwick (1982) also
considered the supercritical transonic trailing edge of a flat plate when the external
flow is slightly supersonic and then Bodonyi & Kluwick (1998) extended this work
to a more general case of the transonic viscous–inviscid interaction, but the inviscid
flow was still assumed to be slightly supersonic.

The laminar separation at a corner point in transonic flow with a free streamline
has been considered by Ruban & Türkyilmaz (2000) who used asymptotic analysis
of the Navier–Stokes equations at large values of the Reynolds number. They found
that the interaction region is governed by the inviscid–inviscid interaction due to the
flow field in which the angle of the expansion ramp is assumed to be sufficiently large
(an order-one quantity) to cause flow separation at a corner point. It is assumed that
the separation region is much longer than the region of interaction which forms in
a small vicinity of the corner point. In this case, the high-Reynolds-number limit of
the solution of the governing Navier–Stokes equations is represented by the inviscid
flow in which the shear layer developing along the separated streamline (also called
a free streamline) degenerates into a line of discontinuity of the tangential velocity.
However, in the present case, we have investigated the flow field with relatively smaller
ramp angle (O(Re−3/10)) and we look at which values of the ramp angle can cause
flow separation in subcritical velocities (less than the speed of sound).

The inviscid transonic flow past a corner appears to be non-unique and may take
two different forms. In the first solution, the flow is subsonic everywhere except near
the corner point. The second solution describes a smooth transition of the sonic flow
into a supersonic one; this flow was considered by Bodonyi & Kluwick (1977, 1982,
1998) and by Bodonyi (1979) for the different flow topologies. We shall develop the
theory of incipient separation which is based on the first of the solutions.

In the present work, we shall investigate the incipient separation near a corner point
of the body surface which may be observed, for example, when the flap of an aircraft
wing is deflected. The purpose of this study is to find the critical deflection angle
when an attached flow turns into a separated one, and subcritical velocities have been
considered contrary to Bodonyi & Kluwick (1977, 1982, 1998) and Bodonyi (1979).
In accordance with the procedure adopted, the analysis of the flow starts with the
investigation of the boundary layer near the small vicinity of the corner point using
triple-deck analysis. The formulation of the interaction problem needs proper far-field
boundary conditions to obtain the desired local solution. These conditions will be
acquired from the solution of the Kármán–Guderley equation describing the inviscid
part of the flow near the corner points using the hodograph method. Since the corner
has two different geometries, the boundary conditions appear to possess two distinct
forms. In one case, namely a convex corner, the boundary condition can be written
in terms of the Airy Ai function, and the other in terms of the Airy Bi function.

2. Transonic boundary-layer analysis
We shall first analyse the behaviour of the boundary layer in transonic flow near

the corner point of ramps, such as in figure 1, and then turn to the inviscid transonic
flow analysis for the external flow. We will use Cartesian coordinates x̂, ŷ. The velocity
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Figure 1. Boundary-layer structure with triple deck. (a) Convex and (b) concave corner.

components in these coordinates will be denoted by û and v̂. The pressure and gas
density will be denoted by p̂ and ρ̂. In the boundary layer, we also need to consider
the enthalpy ĥ and dynamic viscosity µ̂. The corresponding non-dimensional variables
will be introduced as follows:

û = V̂0u,

ρ̂ = ρ̂0ρ,

v̂ = V̂0v,

ĥ = V̂ 2
0 h,

p̂ = p̂0 + ρ̂0V̂
2
0 p,

µ̂ = µ̂0µ,

x̂ = Lx, ŷ = Ly.

Recall that suffix ‘0’ is used to denote the values of the corresponding quantities in
the inviscid flow just upstream of the interaction region and L is the characteristic
length scale. In the following analysis, the Reynolds number

Re =
ρ̂0V̂0L

µ̂0

is assumed large enough, and the asymptotic expansions of the gas dynamic functions
in the boundary layer are sought in the form

u(x, y; Re) = U0(x, Y ) + · · ·,
p(x, y; Re) = P0(x, Y ) + · · ·,
h(x, y; Re) = h0(x, Y ) + · · ·,

v(x, y; Re) = Re−1/2V0(x, Y ) + · · ·,
ρ(x, y; Re) = ρ0(x, Y ) + · · ·,
µ(x, y; Re) = µ0(x, Y ) + · · ·,

 (2.1)

where, as usual, the coordinate normal to the wall is scaled as

y = Re−1/2Y.

Substitution of (2.1) into the Navier–Stokes equations gives the following set of
equations

ρ0

(
U0

∂U0

∂x
+ V0

∂U0

∂Y

)
= −∂P0

∂x
+

∂

∂Y

(
µ0

∂U0

∂Y

)
, (2.2)

ρ0

(
U0

∂h0

∂x
+ V0

∂h0

∂Y

)
= U0

∂P0

∂x
+

1

Pr

∂

∂Y

(
µ0

∂h0

∂Y

)
+ µ0

(
∂U0

∂Y

)2

, (2.3)

∂(ρ0U0)

∂x
+

∂(ρ0V0)

∂Y
= 0, (2.4)

1

(γ − 1)ρ0

+
γ

γ − 1

P0

ρ0

= h0. (2.5)
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Equations (2.2)–(2.5) are in turn the momentum equation projected upon the longi-
tudinal coordinate x, the energy equation with Pr being the Prandtl number, the
continuity equation and the state equation. The Prandtl number of unity is used for
simplification of the asymptotic analysis. This physically implies that adiabatic flow
is effectively present at every point in the boundary layer.

To leading order the pressure in the boundary layer does not change across the
boundary layer

∂P0

∂Y
= 0,

which is easily confirmed by substituting (2.1) into the y-component of the momentum
equation.

In the inviscid analysis of transonic flows, approaching the corner point on the
compression ramp, we know that the pressure has a singularity. This indicates that
we have to introduce the triple-deck structure near the corner point. To describe the
flow in the triple-deck region, we have to know the asymptotic form of the solution
of the Navier–Stokes equations in each of the three layers. To predict this form we
perform the so-called inspection analysis (see Appendix A) and the following results
have been obtained for the longitudinal extent of the interaction region

x ∼ Re−3/10 (2.6)

and for the thickness of the viscous sublayer

y ∼ Re−3/5. (2.7)

Thus, the order of magnitude of inclination angle of the ramp, α, is easily obtained
from formulae (2.6) and (2.7) as

α ∼ y

x
∼ Re−3/10.

Now we can turn to a rigorous asymptotic analysis of the flow in the three layers of
the triple-deck interaction region.

2.1. Analysis of the viscous sublayer

Using estimations (2.6) and (2.7), asymptotic analysis of the Navier–Stokes equations
may be dealt with using the following limit procedure:

X = Re3/10x = O(1), Y1 = Re3/5y = O(1) as Re → ∞.

Gas dynamics functions may be represented in this region by the asymptotic expan-
sions

u(x, y) = Re−1/10U1(X, Y1) + · · · ,
v(x, y) = Re−2/5v1(X, Y1) + · · · ,
p(x, y) = Re−1/5P (X, Y1) + · · · ,

h(x, y) = h1(X, Y1) + · · · ,
ρ(x, y) = ρ1(X, Y1) + · · · ,
µ(x, y) = µ1(X, Y1) + · · · .

 (2.8)
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Substituting (2.8) into the Navier–Stokes equations, we have

∂U1

∂X
+

∂V1

∂Y1

= 0, (2.9)

ρ1

(
U1

∂U1

∂X
+ V1

∂U1

∂Y1

)
= −∂P

∂X
+

∂

∂Y1

(
µ1

∂U1

∂Y1

)
, (2.10)

∂P

∂Y1

= 0, (2.11)

ρ1

(
U1

∂h1

∂X
+ V1

∂h1

∂Y1

)
=

∂

∂Y1

(
µ1

Pr

∂h1

∂Y1

)
. (2.12)

The energy equation (2.12) admits a constant-enthalpy solution h1 = const, which
means that the flow in the lower deck may be treated as incompressible. The first
boundary condition for equations (2.9)–(2.11) is the no-slip condition, and it should
be imposed on the velocity components on the body surface

U1 = V1 = 0 at Y1 = f̄ (X), (2.13)

where f̄ (X) is the shape function of the compression or expansion ramp. Thus, the
ramp shape is felt within the lower deck. Equations (2.9) and (2.11) also require an
initial condition. It is deduced from matching with the Blasius solution valid in the
boundary layer upstream of the interaction region as

U1 = λY1 + · · · as X → −∞. (2.14)

Here, λ represents the wall shear in the oncoming boundary layer.
The asymptotic behaviour of the solution of equations (2.9) and (2.10) at the outer

edge of the viscous sublayer has been used to find the slope of the streamlines. For
this purpose, the stream function ψ may be introduced, based on the continuity
equation, such that

U1 =
∂ψ

∂Y1

, V1 = −∂ψ

∂X
.

As a result of the asymptotic analysis at the edge of the viscous sublayer, stream
function ψ(X, Y1) may be written as

ψ(X, Y1) = 1
2
λY 2

1 + A∗(X)Y1 + · · · as Y1 → ∞. (2.15)

The function A∗(x), apparently, cannot be found from the analysis of the momentum
and continuity equations near the outer edge of the viscous sublayer. The entire
solution of the problem that describes the flow behaviour between Y1 = 0 and Y1 = ∞
and consideration of the boundary conditions (2.13), (2.14) are necessary. To reveal
the physical meaning of function A∗(X), we combine (2.15) with (2.8). As a result, the
slope of the streamlines at the outer edge of the viscous sublayer appears to be

θ =
v

u

∣∣∣∣
Y1→∞

= Re−3/10

[
−1

λ
A′

∗(X)

]
+ · · · (2.16)

where A∗(X) is called the displacement function.

2.2. Analysis of the main-deck flow

Asymptotic analysis of the Navier–Stokes equations in the main part of the boundary
layer is based on the following limit procedure:

X = Re3/10x = O(1), Y = Re1/2y = O(1) as Re → ∞. (2.17)
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The asymptotic solution of the Navier–Stokes equations in the main part of the
boundary layer may be written in the following form:

u(x, y) = U20(Y ) + Re−1/10U21(X, Y ) + · · · ,
v(x, y) = Re−3/10V21(X, Y ) + · · · ,
p(x, y) = Re−1/5P (X, Y ) + · · · ,

h(x, y) = h20(Y ) + Re−1/10h21(X, Y1) + · · · ,
ρ(x, y) = ρ20 + Re−1/10ρ21(X, Y ) + · · · ,
µ(x, y) = µ20 + Re−1/10µ21(X, Y ) + · · · .

Substituting these asymptotic expansions into the Navier–Stokes equations, we have

ρ20

(
∂U21

∂X
+

∂V21

∂Y

)
+ U20

∂ρ21

∂X
+ V21

∂ρ20

∂Y
= 0, (2.18)

∂U21

∂X
= V21

U ′
20

U20

, (2.19)

∂P

∂Y
= 0, (2.20)

U20

∂h21

∂X
+ V21

∂h20

∂Y
= 0, (2.21)

and from the state equation, h20 and h21 can be expressed in terms of density and
Mach number as

h20 =
1

(γ − 1)ρ20

, (2.22)

h21 = − 2M0

(γ − 1)ρ20

− ρ21

(γ − 1)ρ2
20

. (2.23)

Substituting (2.22) and (2.23) into (2.21) gives

U20

∂ρ21

∂X
+ V21

∂ρ20

∂Y
= 0. (2.24)

Taking (2.24) into account, (2.18) simplifies to

∂U21

∂X
+

∂V21

∂Y
= 0. (2.25)

Combining (2.25) with (2.19) gives

∂

∂Y

(
V21

U20

)
= 0 (2.26)

which means that the slope of the streamlines, θ , is constant across the main part of
the boundary layer.

It follows from the above analysis that the displacement effect of the boundary layer
in the three-tiered interaction region is produced entirely by the viscous sublayer.
Indeed, at the bottom of the viscous sublayer, the slope angle θ is equal to the
slope of the body surface. However, variations in the pressure make the streamlines
change their shape and, instead of being parallel to the body surface, they acquire the
slope which, at the outer edge of the viscous sublayer, is given in formula (2.16). The
slope angle then stays unchanged across the main part of the boundary layer. In
the upper deck, it is converted into perturbations of the pressure which penetrate back
into the viscous sublayer without any change, in accordance with (2.20). Therefore,
in order to close the formulation of the viscous–inviscid interaction problem, the
upper deck of the interaction region (see figure 1) remains to be considered.
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2.3. Asymptotic analysis of the upper deck

In this region, the flow is assumed to be inviscid and irrotational. The asymptotic
analysis of the Navier–Stokes equation may be performed based on the following
limit procedure:

X = Re3/10x = O(1), Y3 = Re1/5y = O(1) as Re → ∞. (2.27)

Gas dynamics functions may be represented in the following asymptotic forms:

u(x, y) = 1 + Re−1/5U31(X, Y3) + · · · ,
ρ(x, y) = 1 + Re−1/5ρ31(X, Y3) + · · · ,

v(x, y) = Re−3/10V31(X, Y3) + · · · ,
p(x, y) = Re−1/5P3(X, Y3) + · · · .

}
(2.28)

Because of the assumptions that the flow is inviscid and irrotational in the upper
deck, the Navier–Stokes equations can be reduced to the velocity potential equation.
In the potential equation, using Bernoulli’s equation, the speed of sound, a, may be
deduced to be

a2 =
1

M2
0

− Re−1/5(γ − 1)M1 + · · ·,

where M0 is the undisturbed value of the Mach number immediately upstream of
the interaction region. We assumed that M0 has a similar asymptotic form to the
longitudinal velocity component as

M0 = 1 + Re−1/5M1 + · · · .

Hence, the speed of sound a may be reduced to

a2 = 1 − Re−1/5(−2M1 − (γ − 1)U31 + · · · ). (2.29)

Substitution of the above asymptotic forms (2.28) and (2.29) and collecting the
leading-order terms, we have

[K∗ − (γ + 1)U31]
∂U31

∂X
+

∂V31

∂Y3

= 0, (2.30)

where K∗ is the Kármán–Guderley parameter and K∗ = −2M1 K∗ describes the
type of local flow regime; if it is less than zero, the flow is supersonic or greater than
zero, the flow becomes subsonic. Moreover, in this region, the pressure distribution
can be found in the form of the linearized Bernoulli equation,

P3 = −U31, (2.31)

using the inviscid flow theory (see Cole & Cook 1986).

3. Formulation of the interaction problem
In this section, we shall present the formulation of the viscous–inviscid interaction

problem for the transonic flow near the corner point of an expansion ramp. Before
giving the formulation, we have to find a relation between the displacement function
and vertical velocity component at the ‘bottom’ of the upper-deck region. This relation
can be found by performing matching between corresponding layers in the boundary
layer.

To perform matching between the viscous sublayer and the main part of the boun-
dary layer, we recall that the slopes of the streamlines in the main part and the outer
edge of the viscous sublayer have to coincide with each other in the overlap region.
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As a result, we have

V31(X, 0) = −1

λ
A′

∗(X). (3.1)

Summarizing the results of the above analysis, we note that the flow near to a
corner point of a compression or expansion ramp is governed by the interaction
between the viscous sublayer and external inviscid transonic flow. The intermediate
layer occupying the main part of the boundary layer plays a passive role in the inter-
action process. It simply transmits the streamline slope angle generated in the viscous
sublayer to the external inviscid flow region, and also transmits the pressure generated
in the external flow region to the viscous sublayer without change.

Since the Kármán–Guderley equation governing the inviscid external flow field is
nonlinear, we cannot deduce a simple interaction law as in the case of subsonic and
supersonic flows or in the work of Bodonyi (1979) corresponding to supercritical
flows. However, we can solve the Prandtl equations with the corresponding boundary
conditions for the viscous sublayer, and the Kármán–Guderley equations for the
inviscid external part of the triple deck separately for a given displacement function
to calculate the pressure at each part. After that, the displacement function can be
corrected using the Newton method in order to adjust the pressure distributions in
the inviscid and viscous parts of the flow.

The flow in the viscous sublayer is governed by the Prandtl boundary-layer
equations (2.9)–(2.12). They may be rewritten as

ρ1

(
U1

∂U1

∂X
+ V1

∂U1

∂Y1

)
= −∂P

∂X
+ µ1

∂2U1

∂Y 2
1

,

∂U1

∂X
+

∂V1

∂Y1

= 0,

 (3.2)

which have to be solved with the boundary conditions (2.13), (2.14) and (2.15),

U1 = λY1 + · · · as X → −∞,

U1 = λY1 + A∗(X) + · · · as Y1 → ∞,

U1 = V1 = 0 at Y1 = f̄ (X).

 (3.3)

The flow in the inviscid external part of the triple-deck structure is governed by the
Kármán–Guderley equation (2.30) and the irrotationality equation. They are written
as

[K∗ − (γ + 1)U31]
∂U31

∂X
+

∂V31

∂Y3

= 0,

∂U31

∂Y3

− ∂V31

∂X
= 0,

 (3.4)

which have to be solved subject to the boundary conditions (2.31), (3.1) and they may
be rewritten as

P3 = −U31|Y3=0,

V31|Y3=0 = −1

λ
A′

∗(X) + · · · .

 (3.5)

Note that P = P3 on Y3 = 0.
We also have to use the far-field boundary conditions which have been obtained

from the analysis of the inviscid transonic flows near to the corner point in the hodo-
graph plane.
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It is convenient to scale out the constants λ, ρ1, µ1 from these equations (3.2), (3.4)
and the boundary conditions (3.3), (3.5) by using the affine transformations

U1 = µ
1/7
1 ρ

−9/14
1 λ−1/7U, V1 = µ

4/7
1 ρ

−15/14
1 λ−4/7

(
V + U

df

dx

)
,

P1 = µ
2/7
1 ρ

−2/7
1 λ−2/7P, Y1 = µ

1/7
1 ρ

−9/14
1 λ−8/7(y + f (x)),

U31 = µ
2/7
1 ρ

−2/7
1 λ−2/7Ū , V31 = µ

3/7
1 ρ

−3/7
1 λ−3/7V̄ ,

X = µ
−2/7
1 ρ

−3/14
1 λ−5/7x, Y3 = µ

−4/7
1 ρ

−1/14
1 λ−3/7ȳ,

A∗ = µ
1/7
1 ρ

−9/14
1 λ−1/7(A − f (x)), K∗ = µ

2/7
1 ρ

−2/7
1 λ−2/7K,

θ̄0 = µ
3/7
1 ρ

−3/7
1 λ−3/7θ0, f̄ (X) = µ

1/7
1 ρ

−9/14
1 λ−8/7f (x).

As a result, the transonic viscous–inviscid interaction problem takes the following
canonical form. For the viscous sublayer, we have

U
∂U

∂x
+ V

∂U

∂y
= −∂P

∂x
+

∂2U

∂y2
, (3.6a)

∂U

∂x
+

∂V

∂y
= 0, (3.6b)

which should be solved with the boundary conditions

U = y + · · · as x → −∞, (3.7a)

U = y + A(x) + · · · as y → ∞, (3.7b)

U = V = 0 at y = 0. (3.7c)

For the inviscid external flow

[K − (γ + 1)Ū ]
∂Ū

∂x
+

∂V̄

∂ȳ
= 0,

∂Ū

∂ȳ
− ∂V̄

∂x
= 0,

 (3.8)

and corresponding boundary conditions at ȳ = 0 are

P = −Ū ,

V̄ = −A′(x) + f ′(x) + · · · .

}
(3.9)

We also need to formulate the far-field boundary conditions of the external inviscid
flow. For this purpose, we introduce so called hodograph analysis. In this approach,
the Kármán–Guderley equation and irrotationality equation may be written in the
following form:

w
∂w

∂x
− ∂ϑ

∂ȳ
= 0,

∂w

∂ȳ
− ∂ϑ

∂x
= 0,

 (3.10)

where w = (γ + 1)Ū − K, ϑ = (γ + 1)V̄ .
The flow field is bounded by two flat plates, one is horizontal and placed on the

negative x-axis and the other is deflected at an angle α = εθ̄ 0 with ε = O(Re−3/10) � 1
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Figure 2. Boundary conditions in the hodograph plane. (a) Convex and (b) concave corner.

and θ̄0 is an order-one quantity, as shown in figure 1. The corresponding boundary
conditions for this flow may be written as

ϑ |ȳ=0 =

{
0 for x < 0,

ϑ0 for x > 0,
(3.11)

where ϑ0 = (γ + 1)θ̄ 0 > 0.
The hodograph method deals with the inverted form of (3.10). The resulting

equations, known as the hodograph equations, have the velocity components w, ϑ

as independent variables, and the coordinates x, ȳ, as the sought functions. These
equations are easier to deal with than (3.10) since they are linear. Hence, the governing
equations (3.10) may be written in the hodograph variables as follows

w
∂ȳ

∂ϑ
− ∂x

∂w
= 0, (3.12a)

∂ȳ

∂w
− ∂x

∂ϑ
= 0. (3.12b)

Eliminating x from this system of equations yields the well-known Tricomi equation

w
∂2ȳ

∂ϑ2
− ∂2ȳ

∂w2
= 0. (3.13)

This is a variable coefficient partial differential equation which changes its type as w

changes its sign. If w < 0 the equation is elliptic, if w > 0 the equation is hyperbolic.
The line w = 0, the ϑ-axis in the hodograph plane, is a sonic line.

The boundary conditions in the physical plane can be converted in the hodograph
plane as follows for the case of a concave corner (compression ramp)†. The first
boundary is represented by the flat plate upstream of the corner. Here ϑ = 0 and
y = 0 (see figure 2b). Downstream of the corner ϑ = ϑ0 on the body surface, and we
set ȳ = 0 on this surface since the vertical velocity component is assumed to be small
in the transonic small perturbation theory. We further note that ȳ > 0 in the flow
field. The solution of Tricomi equation (3.13) using separation of variables, can be
represented as

ȳ(w, ϑ) = W (w)Θ(ϑ). (3.14)

† When it is convex (see figure 2a), the same analysis can be used to obtain the solution of the
Kármán–Guderley equation.
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Hence, the solution of the Tricomi equation corresponding to the present boundary
conditions can be written as

ȳ = C sin(µϑ)Ai
(
−µ2/3w

)
, (3.15)

where C is the constant of integration and has been chosen to be unity in the rest of
the paper. Since y is positive, Ai remains positive when w satisfies the restriction†

µ2/3w � |a1|,
where a1 = −2.33810 is the first zero of the function Ai(x) (see Abramowitz & Stegun
1965). As a result, w becomes less than zero and the velocity field becomes subcritical.

So far we have found the relationship between y and the velocity components. Now
we substitute (3.15) into (3.12b). This yields

x =
1

µ1/3
cos(µϑ) Ai′

(
−µ2/3w

)
+ χ(w). (3.16)

To find the function χ(w), (3.12a) is used, taking into account that Ai′′(s) = s Ai(s),
we have

χ ′(w) = 0.

Thus, χ(w) is constant and represents a shift along the x-axis, or the location of the
corner point with respect to the x-axis. Hence, without lost of generality, it can be
set to zero. Thus, (3.16) may be written as

x =
1

µ1/3
cos(µϑ) Ai′

(
−µ2/3w

)
. (3.17)

The equations (3.15) and (3.17) together suggest that the horizontal velocity has to
satisfy the condition

µ2/3w � |a′
1|,

where a′
1 = −1.01879 (see Abramowitz & Stegun 1965).

To find the asymptotic behaviour of the solution (3.15) far from the corner,
asymptotic forms of the Airy Ai and Ai′ functions (see Abramowitz & Stegun 1965)
have been used in (3.15) and in (3.17). Hence, we have the leading-order approximation
of the far-field boundary conditions in the closed form as

x = −cos(µϑ)

2
√

π 6
√

µ
(−w)1/4 exp

(
−2/3µ(−w)3/2

)
,

ȳ =
sin(µϑ)

2
√

πµ1/6
(−w)−1/4 exp

(
−2/3µ(−w)3/2

)
,

 (3.18)

where w = (γ + 1)Ū − K and ϑ = (γ + 1)V̄ .
The same analysis can be repeated for the case of the convex corner problem

considering the boundary conditions (see figure 2a); ϑ = 0 and ȳ = 0, downstream of
the corner ϑ = −ϑ0 on the body surface, ȳ = 0 on this surface. In this case, the solution
of the Kármán–Guderley equation may be found in terms of Airy Bi function and
its derivative as

x = − 1

µ1/3
cos(µϑ) Bi′

(
−µ2/3w

)
,

ȳ = − sin(µϑ) Bi
(
−µ2/3w

)
.

 (3.19)

† For other intervals, Ai becomes oscillating and hence violates the condition ȳ > zero.



56 İ. Türkyilmaz

Making use of the asymptotic properties of the Airy Bi and Bi′ functions (see,
Abramowitz & Stegun 1965), the leading-order approximation of (3.19) may be
written as

x = −cos(µϑ)

µ1/6
√

π
(−w)1/4 exp

(
2/3µ(−w)3/2

)
,

ȳ = −sin(µϑ)

µ1/6
√

π
(−w)−1/4 exp

(
2/3µ(−w)3/2

)
,

 (3.20)

Hence, we have the corresponding representation of the far-field boundary conditions
for the convex-corner problem.

Summarizing this analysis, we can conclude that the Kármán–Guderley equation
admits a solution in the form of Airy functions which may be used to formulate
the far-field boundary conditions for the upper-deck of the triple-deck flow near the
corner point in order to preserve the transonic nature of the local flow field in the
cases of the expansion or compression ramp.

4. Numerical solution of the interaction problem
In the previous section, the interaction process of the transonic flow field near to

the corner point of the expansion/compression ramp has been formulated. In this
section, we will give a description of the numerical method to solve the interaction
problem.

It is known that the pressure does not changes across the boundary layer. Hence
the pressure distribution on the body surface in the boundary layer has to coincide
with the pressure distribution generated by the external flow at the bottom of the
upper deck. This can happen only if the distributions of the displacement function
A(x) are properly chosen. The pressure at the bottom of the inviscid flow Pinv(x) may
be calculated for the given displacement function A(x) using (3.8)–(3.18). To calculate
the pressure in the viscous flow Pvis(x), we have to use (3.6)–(3.7). We shall write these
functions in vectorial form and require that

P inv(A) = P vis(A). (4.1)

Here P inv, P vis and A are vector quantities and their components, namely, P inv
i and P vis

i

are the pressures calculated in the inviscid part and viscous sublayer of the triple deck
at the grid points x = xi for i = 0, . . . , Im, and Ai are the values of the displacement
function at these points, respectively. To solve (4.1) the Newton–Raphson linearization
has been used. With Aold denoting an approximation to A given as an initial guess or
found from the previous iteration, an improved approximation,

A = Aold + �A, (4.2)

may be found by substituting (4.2) into (4.1) and making the use of the Taylor
expansions. This gives the following equation for the correction vector �A.[

∂ P inv

∂ A
− ∂ P vis

∂ A

]
�A = P vis(Aold) − P inv(Aold). (4.3)

This is a linear algebraic set of equations written in vector form. The coefficient
matrix involves derivatives of the pressures with respect to displacement thickness
and they are not known in advance.

To start the calculation, an initial guess has been assigned to the displacement
vector A. With this initial guess, P inv and P vis have been calculated and then an
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increment ε (taken as 10−3 in the numerical calculations) has been given to the Ai

component of the displacement vector A such that the new displacement vector has
become

A(i) =
[
A0, A1, . . . , Ai + ε, . . . , AIm

]T
.

In each ith step of the procedure, using the displacement vector A(i), P (i)
inv and P (i)

vis have
been calculated from the solvers of the external inviscid flow and viscous sublayer
equations.

Consequently, the coefficients of the matrix equation (4.3) have been known, so
this equation can be solved using a suitable solver. The solution of (4.3) gives the
correction vector �A and using (4.2) we can find a new displacement vector A. Using
these results, the displacement vector A can be updated calculating the pressure
distributions again from the solvers of external inviscid flow and viscous sublayer
equations, P inv and P vis, respectively. This procedure has been repeated as many times
as it has been required for the accuracy criterion

M = maximum value of {|P inv − P vis|} < tolerance

to be met (the tolerance has been taken as 10−6 in the calculations).

4.1. Numerical method for the external flow

We shall now give a description of the numerical scheme used for the external inviscid
transonic flow. For this purpose, it is convenient to write (3.8) in terms of the velocity
potential

[K − (γ + 1)φx]φxx + φȳȳ = 0. (4.4)

The corresponding boundary conditions are written as

P = −φx + · · · at ȳ = 0, (4.5)

φy = A′(x) + f ′(x) + · · · at ȳ = 0, (4.6)

which should be supplemented with the far-field boundary conditions (3.18). The
computation of the expansion/compression ramp flow has been performed in this
study for a slightly smoothed body shape

f (x) = 1
2
θ0

[
x + (x2 + r2)1/2

]
,

which was used in the boundary condition (4.6). Here, θ0 is the scaled inclination
angle of the expansion/compression ramp and r is the smoothing parameter which
slightly rounds the corner; it was typically taken to be r =0.5.

The numerical calculations have been performed in a rectangular domain ABCD
shown in figure 3. A uniform grid has been adopted in both the x and ȳ directions.
The grid function for the velocity potential φ has been introduced for the node points
(xi, ȳj ) according to the rule

φi,j = φ(xi, ȳj ) for all

{
i = 0, . . . , Im,

j = 0, . . . , Jm.

To start the numerical calculations, we have to specify an initial distribution of the
grid function, φ along the rectangle ABCD. For this purpose, the far-field behaviour
(3.18) was extended to the entire computational domain. This required us to solve
(3.18), for which purpose the Newton method was used.

The solution of (4.4) inside the computational domain was then constructed by
means of successive iterations. The procedure was based on the conventional line
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Figure 3. Computational domain.

relaxation. Starting with the second mesh line (i = 2), we marched downstream through
the computational domain until the line (i = Im − 1), and on each line (i =2, . . . ,

Im − 1) a tridiagonal set of algebraic equations

ajφi,j+1 + bjφi,j + cjφi,j−1 + dj = 0 (j = 1, . . . , Jm − 1), (4.7)

was formulated by the finite-difference approximation of the Kármán–Guderley
equation (4.4). Since (4.4) is a mixed-type partial differential equation, and a choice
of the computational stencil at each grid point was decided based on the sign of
K − (φx)i,j (for details see Appendix B.1).

Once the potential φ has been found, we can calculate the pressure at the bottom of
the inviscid region using the first boundary condition in (3.9). This yields the ‘inviscid’
pressure vector

P inv =
{
P inv

0 , P inv
1 , . . . , P inv

Im

}
. (4.8)

where P inv
i = P (xi) for i = 0, . . . , Im.

4.2. Numerical solution of the boundary-layer equations

In this section, we shall give a description of the numerical method used for solving
the boundary-layer equations (3.6) with boundary conditions (3.7). In this method,
the formulation is based on the shear

ω =
∂U

∂y
. (4.9)

Differentiating (3.6a) with respect to y and using (3.6b), we eliminate the pressure
leading to the following equation for ω

U
∂ω

∂x
+ V

∂ω

∂y
=

∂2ω

∂y2
. (4.10)

Two boundary conditions for this equation

ω = 1 at x = −∞, (4.11)

ω = 1 at y = ∞, (4.12)

immediately follow from (3.7a) and (3.7b). The third boundary condition may be
deduced by setting y =0 in the momentum equation of (3.6) and using the no-slip



Investigation of separation near corner points in transonic flow 59

condition of (3.7). This yields

∂ω

∂y
=

∂P

∂y
at y = 0. (4.13)

With known ω, the longitudinal velocity component may be determined by integrating
(4.9) with the first condition of the no-slip conditions of (3.7) used as an initial
condition. We have

U =

∫ y

0

ω dy1. (4.14)

Introducing the stream function Ψ , we have

U =
∂Ψ

∂y
, V = −∂Ψ

∂x
,

which allows the vertical velocity component V to be calculated.
Finally, (4.10) with the boundary conditions (4.11), (4.12) and (4.13) closes the

formulation of the boundary-layer equation in terms of the shear.
To construct a numerical solution of (4.10) subject to boundary conditions (4.11),

(4.12), a finite-difference technique has been used which may be described as follows.
We introduce a mesh (xi, yj ) (i =0, 1, . . . , Im, j =0, 1, . . . , Jm) and denote the values
of ω at the node points (xi, yj ) via ωi,j ; considered together they constitute the grid
function {ωi,j }. Since pressure is independent of y, it may be represented by the grid
function {Pi} whose elements are defined as Pi = P (xi).

The numerical procedure is based on the conventional line relaxation. Starting with
the second mesh line (i = 1), we marched downstream through the computational
domain, and on each of the lines (i =1, . . . , Im − 1), a tridiagonal set of algebraic
equations

ajωi,j+1 + bjωi,j + cjωi,j−1 + dj = 0 (j = 1, . . . , Jm − 1), (4.15)

was formulated by the following finite-difference approximation of (4.10). Since (4.10)
is a parabolic-type equation, the choice of the computational stencil at each grid
point was decided based on the sign of Ui,j , the in the coefficients (for details see
Appendix B.2). To calculate Ui,j , the trapezium rule has been used for the integral on
the right-hand side of (4.14).

With the known shear ωi,j , the pressure distribution may be calculated with
integrating (4.13) as

Pi = P (xi) =

∫ xi

xmin

∂ω

∂y
dx at y = 0.

Writing this formula in finite-difference form, we find that for i = 1, 2, . . . , Im

Pi = P0 +
�x

2�y

i∑
k=1

[−3(ωk,0 + ωk−1,0) + 4(ωk,1 + ωk−1,1) − (ωk,2 + ωk−1,2)].

Here, P0 is evaluated using the far-field solution (3.18). This procedure gives the
‘viscous pressure’ vector as

P vis =
{
P vis

0 , P vis
1 , . . . , P vis

Im

}
, (4.16)

where P inv
i = Pi for i = 0, . . . , Im.
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Figure 4. Skin friction distribution for K = 1 and θ0 = 5; solid line for mesh 200 × 100 and
dotted line mesh 100 × 100. (a) Convex and (b) Concave corner.
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Figure 5. Numerical results for different intervals; �, [−30, 30]; �, [−20, 20]; �, [−10, 10].
(a) Skin friction distribution for K = 1 and θ0 = 9 in the case of a convex corner. (b) Pressure
distribution for K = 1 and θ0 = 5.0 in the case of a concave corner.

5. Results and discussion
The numerical procedure described in the previous section was applied to the

expansion and compression ramp problem in the following way. We started with a
relatively small value of the scaled ramp angle, namely θ0 = 1.0, using the unperturbed
flow field ωi,j = 1, Vi,j = 0 and Ui,j = yj for the initialization of the unknowns. Keeping
the Kármán–Guderley parameter K fixed, angle θ0 was increased progressively, and
for each new θ0, the converged solution corresponding to a smaller θ0 was used as an
initial guess to start the iterations. This procedure was repeated for different values of
K. Typically, three or four iteration were required for the convergence of iterations
in (4.3) to be reached.

Calculations were repeated for different mesh sizes and interval [−x∞, x∞], such as
in figures 4 and 5 to study the mesh and interval dependency of the numerical results.
As figure 5 shows the results of the calculations obtained on the intervals, x ∈ [−20, 20]
and x ∈ [−30, 30] appear to be almost indistinguishable within the interval x ∈ [−5, 5]
(keep in mind that we are interested in the local solution of the flow field) as the
length of the intervals increases. The results of the present numerical analysis are
presented for the different values of K and θ0 in figures 9 to 13.

In the expansion-ramp problem, the wall pressure distribution for different values
of K shown in figure 8 implies that the velocity increases towards the corner point
and then decreases again. For sufficiently large values of θ0, the flow field has a small
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(a) (b)

Figure 6. Streamlines when the angle is θ0 = 8.0 for K = 0. The inclination angle is
exaggerated for the sake of clarity.
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Figure 7. Dependence of the minimum value of skin friction for different values of
Kármán–Guderley parameter K.

supersonic region. When the value of K decreases, the supersonic zone appears to
be larger for the smaller values of the ramp angle. Meanwhile, when values of K are
greater than 0.5, despite the peak in the velocity, subsonic flow properties become
dominant in the flow field and the supersonic zone disappears near the corner point.
We see that as a result of the flow acceleration near the corner, the skin friction
τ (x) = (∂u/∂y)|y=0 increases upstream of the corner more rapidly as the value of θ0

increases (see figure 10). The maximum skin friction is reached near the corner point
and then downstream τ first drops below the unperturbed value τ = 1, and after that,
despite a continuing pressure increase, it starts to grow. For sufficiently large value of
θ0, a region of recirculating flow has been formed in the boundary layer downstream
of the corner. The fluid motion within this region remains slow and is characterized
by small negative values of the skin friction and moderate adverse pressure gradient.
Thus, the fluid deceleration beyond the corner is more intense than its acceleration
ahead of the corner point. Beginning with a critical value of the parameter θ0, this
deceleration results in the flow separation. The formation of the separation in the
transonic flow with subsequent ‘re-attachment’ some distance downstream may be
observed in figure 10. The separation grows in size as θ0 increases. In the present case,
the entire region of recirculating flow is located behind the corner. The streamline
pattern for K = 0 and θ0 = 9.4 is shown in figure 6(a).
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Figure 8. Pressure distribution is presented for different values of the Kármán–Guderley
parameter K for the case of an expansion ramp. In each figure, numerical results also are
presented for several different ramp angles. (a) P (x) for K = 0, (b) 1, (c) 2, (d) 3.
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Figure 9. As for figure 8, but for a compression ramp.
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Figure 10. Skin friction distribution is presented for different values of the Kármán–Guderley
parameter K for the case of an expansion ramp. In each figure, numerical results also are
presented several different for ramp angles. (a) τ (x) for K = 0, (b) 1, (c) 2, (d) 3.

The incipient separation occurs in the expansion ramp when θ0 has the value of 8.2
for K = 0, as shown in figure 6(a). Moreover, as K increases the incipient separation
appears for the greater values of ramp angle θ0. Figures 10(a) and 12(a) show the
corresponding distributions of the skin friction and the displacement function for
K = 0.

In the case of a compression ramp, the wall pressure distribution for different
values of K shown in figure 9 imply that the velocity in the external inviscid flow
decreases towards the corner point and then increases again, but it cannot produce
any small supersonic region as in the case of a convex corner.

We see that as a result of the flow deceleration near the corner, the skin friction de-
creases upstream of the corner more rapidly as the value of θ0 increases (see figure 11).
The minimum skin friction is reached near the corner point and then downstream τ

first increases above the unperturbed value τ =1, and after that, despite a continuing
pressure decrease, it starts to decay. For sufficiently large values of θ0, a region of
recirculating flow is formed in the boundary layer near the corner. The fluid motion
within this region remains slow and is characterized by small negative values of the
skin friction and moderate adverse pressure gradient. Thus, the fluid acceleration
beyond the corner is more intense than its deceleration ahead of a corner point.
Beginning with a certain value of the parameter θ0, this deceleration results in the
flow separation. The separation grows in size as θ0 increases. Note that in the present
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Figure 11. As for figure 10, but for a compression ramp.
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Figure 12. Distribution of the displacement function is presented for different values of the
Kármán–Guderley parameter K for the case of expansion ramp. In each figure, numerical re-
sults also are presented for several different ramp angles. (a) A(x) for K = 0, (b) 1, (c) 2, (d) 3.
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Figure 13. As for figure 12, but for a compression ramp.

case, the entire region of recirculating flow is located above the corner. The streamline
pattern for K = 0 and θ0 = 8.0 is shown in figure 6(b).

As can be seen from figure 7, the onset of separation occurs when θ0 reaches the
value θ0 = 6.7 for K = 0 as shown in figure 6(b). Figures 11(a) and 13(a) show the
corresponding distributions of the skin friction and the displacement function for
K = 0. The remaining graphs in this paper show the same behaviour for different
values of the Kármán–Guderley parameter K, as explained above. However, as K
increases, the incipient separation appears for the greater values of ramp angle θ0.

The calculations carried out by the current method are based on the use of itera-
tions which inevitably become divergent as soon as the region of recirculating flow is
sufficiently large. Unfortunately, we have not been able to calculate the flow properties
for very large values of θ0. For example, the largest θ0 for K = 0.0 was θ0 = 9.4 in
the case of an expansion ramp. We believe that the reason for this is possibly the
non-uniqueness of the solution.

6. Concluding remarks
The properties of a laminar boundary layer near the corner point of a rigid body

with a stream of transonic flow have been investigated in the large-Reynolds-number
limit. A new numerical technique which is an extension of the so-called semi-inverse
method (Carter 1978, 1979; Le Balleur 1978) to calculate the flow field of the laminar
separation near the corner point in transonic speeds has been developed based on
the viscous–inviscid interaction theory. The method is fully implicit and consists
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of the solution of the inviscid transonic flow equation coupled with the boundary-
layer solution. In addition to this method, a theoretical analysis of the inviscid
transonic flow near the corner point has been performed in the hodograph plane.
As a result, far-field boundary conditions have been formulated. Then the boundary
layer has been investigated based on the triple-deck scheme. It is shown that the
Blasius boundary-layer flow in the vicinity of the sharp corner can be resolved into
a triple-deck structure similar to that proposed by Stewartson (1970), the difference
being that the scaling laws are altered when the external inviscid flow is transonic.
The structure of the triple deck in this case was like that given by Bodonyi (1979)
for the related problem of transonic laminar boundary flow near convex corners.
However, unlike in the case of Bodonyi (1979) where the solution is considered for
the supercritical velocities, the solution of the interaction problem is presented for
different values of the Kármán–Guderley parameter corresponding to the subcritical
velocities. Emergence of the supersonic zone depending on the ramp angle is observed
in the external subsonic flow field although it is small. It has been found that the
incipient separation appears for the greater values of ramp angle, as the Kármán–
Guderley parameter increases. As a result of the small-scale separation, a region of
recirculating flow has been formed in the boundary layer downstream of the corner
and the development of the ‘re-attachment’ has been observed for growing ramp
angle.

Appendix A. Inspection analysis
The asymptotic form of the triple-deck structure can be obtained by performing

the so-called inspection analysis of the flow as follows. As the fluid particles in the
interaction region experience extreme acceleration caused by the singular pressure
gradient, we have to expect that the convective terms on the left-hand side of the
longitudinal momentum equation are of the same order of magnitude as the pressure
gradient on the right-hand side. This may be expressed as

ρu
∂u

∂x
∼ ∂p

∂x
. (A 1)

In the sublayer (lower deck) �u ∼ u, and if the aerofoil surface is not artificially heated
or cooled, the non-dimensional density ρ and viscosity µ are order-one quantities.
This simplifies (A 1), written in finite difference form and yields

�u ∼
√

�p. (A 2)

In the boundary layer immediately upstream of the interaction regions, u is of the
order of Y . This relation may be written in terms of the ‘original’ transverse variable
y ∼ Re1/2Y as

�u ∼ u ∼ Re1/2y. (A 3)

On the aerofoil surface the no-slip condition has to be satisfied. This requires
the lower deck be viscous. Taking this into account, we suppose that in this region
convective terms and viscous terms have to be of the same order of magnitude, i.e.

ρu
∂u

∂x
∼ 1

Re

∂

∂y

(
µ

∂u

∂y

)
. (A 4)
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Ωn−1
i,j Ω̃n−1

i,j Operator

> 0 > 0 Elliptic
< 0 < 0 Hyperbolic
< 0 > 0 Sonic
> 0 < 0 Shock

Table 1. The rules of switching the operators.

In terms of finite-difference operators, this relation may be written as

u

�x
∼ 1

Re y2
. (A 5)

In addition to these equations, it is known that in the transonic small-disturbance
theory, the pressure perturbations introduced in the upper deck may be estimated as

�p ∼ (θ ∗)2/3, (A 6)

where θ∗ is the angle of the velocity vector at the outer edge of the boundary layer
(see Cole & Cook 1986). It can be estimated as

θ∗ ∼ y

�x
. (A 7)

Combining (A 6) and (A 7) we have

�p ∼
(

y

�x

)2/3

. (A 8)

Solving (A 2), (A 3), (A 5) and (A 8) together, we have found the following estimate
for the longitudinal extent of the interaction region

x ∼ Re−3/10. (A 9)

Substituting (A 9) into (A 3) and (A 5) indicates that the thickness of the viscous
sublayer

y ∼ Re−3/5.

A rigorous asymptotic analysis of the flow in the three layers of the triple-deck inter-
action region can be performed based on this scaling.

Appendix B. Numerical method
B.1. The external flow

We calculated at each point two values of K − (φx)i,j using the central and backward
finite-difference approximation for (φx)i,j ;

Ωn−1
i,j = K − φi+1,j − φi−1,j

2�x
, Ω̃n−1

i,j = K − 3φi,j − 4φi−1,j + φi−2,j

2�x
.

Here the upper index n − 1 was used to indicate that Ωn−1
i,j and Ω̃n−1

i,j were calculated
using a distribution of φi,j on the previous iteration. Then the finite-difference operator
for equation (4.4) was chosen according to table 1 as in Cole & Cook (1986).

If Ωn−1
i,j � 0 and Ω̃n−1

i,j � 0 then equation (4.4) is ‘locally’ elliptic and should be
approximated using central differences for both the second-order derivatives of φ. If,
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on the other hand, Ωn−1
i,j < 0 and Ω̃n−1

i,j < 0, then a hyperbolic stencil with upstream
differencing for φx and φxx should be used. In our calculations, second-order accurate
approximation was adopted. If Ωn−1

i,j < 0 and Ω̃n−1
i,j > 0 , then a parabolic stencil should

be used. Finally, if Ωn−1
i,j � 0 and Ω̃n−1

i,j < 0, then the grid point (xi, yj ) is assumed to
lie on a shock wave and we therefore used for such points the same stencil as in the
case of the elliptic points.

It follows that the coefficients in (4.7) may be calculated as

aj =
1

(�ȳ)2
, cj =

1

(�ȳ)2
for all cases,

bj =



−Ωn−1
i,j

1

(�x)2
− 1

(�ȳ)2
if elliptic and shock,

Ω̃n−1
i,j

1

(�x)2
− 1

(�y)2
if hyperbolic,

− 1

(�ȳ)2
if sonic,

dj =


Ωn−1

i,j

φi+1,j + φi−1,j

(�x)2
if elliptic and shock,

Ω̃n−1
i,j

−5φi−1,j + 4φi−2,j − φi−3,j

(�x)2
if hyperbolic,

0 if sonic.

Note that φi−1,j , φi−2,j and φi−3,j have been updated already, while φi+1,j should be
taken from the previous iteration.

The Thomas technique was proved to be an efficient tool for solving (4.7) on each
mesh line x = xi . Two boundary conditions are required to solve (4.7). At the top
boundary, the value of φi,Jm

as given by the boundary condition (3.18) was used. At
the bottom boundary, φi,0 has been calculated using the second boundary condition
in (3.9), i.e.

∂φ

∂y
= −A(x) + f ′(x) at y = 0,

which may be written in finite differences as

−3φi,0 + 4φi,1 − φi,2

2�ȳ
= −A′(xi) + f ′(xi) (i = 1, . . . , Im−1). (B 1)

As has been mentioned already, (4.7) may be solved on each mesh line x = xi using
the Thomas reduction formula

φi,j = Rjφi,j−1 + Qj. (B 2)

In particular, for j = 1 and j = 2 we have

φi,1 = R1φi,0 + Q1,

φi,2 = R2φi,1 + Q2 = R1R2φi,0 + R2Q1 + Q2.
(B 3)

Substituting (B 3) into (B 1) and solving for φi,0 we have

φi,0 =
R2Q1 + Q2 − 4Q1 + 2�y[−A′(xi) + f ′(xi)]

4R1 − R1R2 − 3
. (B 4)
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Now the distribution of φ along the line xj may be updated using (B 2), and we can
move on to the next line. The sweeps over the calculation domain have been repeated
as many times as required for the convergence criterion,

max
i,j

∣∣φnew
i,j − φold

i,j

∣∣ < ε,

to be met. The numerical calculations have been performed with ε = 10−6. The size
of the computational domain has been taken to be x ∈ [−20, 20], y ∈ [0, 15] and
x ∈ [−30, 30], y ∈ [0, 15] . The number of grid points have been also varied from
100 × 50 to 200 × 100.

B.2. The internal flow

If Ui,j � 0, then (4.10) should be approximated using backward finite differences
for the first-order derivative of ω with respect to x. If, on the other hand Ui,j < 0,
the forward finite differencing for ∂ω/∂X should be used. Also, in our calculations
second-order, accurate approximation was adopted.

It follows that the coefficients in (4.15) may be calculated as

aj =
Vi,j

2�y
− 1

(�y)2
,

bj =


3Ui,j

2�x
+

2

(�y)2
if Ui,j � 0,

−3Ui,j

2�x
+

2

(�y)2
if Ui,j < 0,

cj = − 1

(�y)2
− Vi,j

2�y
,

dj =


2Ui,j

�x
ωi+1,j − Ui,j

2�x
ωi+2,j if Ui,j � 0,

−2Ui,j

�x
ωi−1,j − Ui,j

2�x
ωi−2,j if Ui,j < 0.

The Thomas technique proved to be an efficient tool for solving (4.15) on each mesh
line x = xi . Two boundary conditions are required to solve (4.15). At the top boundary,
the value of ωi,Jm

= 1 given by the boundary condition (4.12) was used. At the bottom
boundary, ωi,0 was calculated based on following procedure.

We write the formula to calculate ωi,j as

ωi,j = Rjωi,j−1 + Qj for j = 0, 1, 2, . . . , Jm, (B 5)

where Rjm
=0 and QJm

=1, and also ωi,j can be calculated as

ωi,j = Ãjωi,0 + B̃j , (B 6)

where Ã0 = 1 and B̃0 = 0. A general formula to calculate Ãj and B̃j for j � 1 may be

easily derived substituting ωi,j−1 = Ãj−1ωi,0 + B̃j−1 into (B 5). This yields

Ãj = Ãj−1Rj, B̃j = RjB̃j−1 + Qj. (B 7)

Combining (3.7b) with (4.14) and discretization gives

ymax + Ai =

Jm∑
j=1

ωi,j + ωi,j−1

2
�y, (B 8)
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where Ai is the value of the displacement function, A(x), evaluated at x = xi . Using
(B 6), we rearrange (B 8) and we have

ωi,0 =
1

D
(Ai + ymax − C), (B 9)

where C = 1
2
�y

Jm∑
1

(Ãj + Ãj−1), D = 1
2
�y

Jm∑
1

(B̃j + B̃j−1).

Now it is easy to update the distribution of ω on the line considered by making
use of (B 6). This procedure has been repeated as many times as required for the
convergence criterion,

max
i,j

∣∣ωnew
i,j − ωold

i,j

∣∣ < tolerance,

to be met. The tolerance has been taken to be 10−6. The typical size of the com-
putational domain was x ∈ [−20, 20], y ∈ [0, 15]. The number of grid points was also
varied from 50 × 50 to 200 × 100.

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions, with Formulas, Graphs,
and Mathematical Tables . National Bureau of Standards.

Bodonyi, R. J. 1979 Transonic laminar boundary-layer flow near convex corners. Q. J. Mech. Appl.
Maths 32, 63–71.

Bodonyi, R. J. & Kluwick, A. 1977 Freely interacting transonic boundary layers. Phys. Fluids 20,
1432–1437.

Bodonyi, R. J. & Kluwick, A. 1982 Supercritical transonic trailing-edge flow. Q. J. Mech. Appl.
Maths 35, 265–277.

Bodonyi, R. J. & Kluwick, A. 1998 Transonic trailing-edge flow. Q. J. Mech. Appl. Maths 51,
297–310.

Carter, J. 1978 A new boundary layer interaction technique for separated flows. NASA TM-78690.

Carter, J. 1979 A new boundary-layer inviscid iteration technique for separated flow. AIAA Paper
79–1450.

Cole, J. D. & Cook, L. P. 1986 Transonic Aerodynamics . North-Holland.

Jenson, R., Burggraf, O. & Rizzetta, D. 1975 Asymptotic solution for supersonic viscous flow
past a compression corner. Lecture Notes in Physics , vol. 35, pp. 218–224. Springer.

Le Balleur, J. 1978 Couplage visqueux–non-visqueux; méthode numérique et applications aux
écoulements bidimensionnels transoniques et supersoniques. Rec. Aerosp. 2, 65–76.

Neiland, V. Y. 1971 The asymptotic theory of the interaction of a supersonic flow with a boundary
layer. Izv. Akad. Nauk SSSR, Mech. Zhid. i Gaza 4, 41–47 (engl. transl. Fluid Dyn. 6, 587–592).

Ruban, A. I. 1976 On the theory of laminar flow separation of a fluid from a corner point on a
solid surface. Uch. Zap. TsAGI 7 (4) 18–28 (in Russian).

Ruban, A. I. 1978 Numerical solution of the local asymptotic problem of the unsteady separation
of a laminar boundary layer in a supersonic flow. Z. Vych. Mat. Mat. Fiz. 18, 1253–1265 (engl.
transl. USSR Comput. Maths Math. Phys. 18 (5), 175–187).

Ruban, A. I. & Türkyilmaz, I. 2000 On laminar separation at a corner point in transonic flow.
J. Fluid Mech. 423, 345–380.

Stewartson, K. 1970 On supersonic laminar boundary layers near convex corners. Proc. R. Soc.
Lond. A 319, 289–305.


